Implicit Differentiation

1. The figure below, which shows the line tangent to the graph of the circle $(x+1)^2 + (y-2)^2 = 9$ at the point $(1,\sqrt{5}+2)$. Which formula that gives the slope of the tangent line to the graph of this circle at any point (x, y) on the circle?

(a)
$$\frac{dy}{dx} = -\frac{y}{x}$$

(b)
$$\frac{dy}{dx} = \left(\frac{y}{x}\right)^{2}$$

(c)
$$\frac{dy}{dx} = \frac{y - y_{1}}{x - x_{1}}$$

(d)
$$\frac{dy}{dx} = \frac{y - 2}{x - 1}$$

(e)
$$\frac{dy}{dx} = \frac{x + 1}{2 - y}$$

2. The figure below, which shows the line tangent to the graph of the circle $(x+1)^2 + (y-2)^2 = 9$ at the point $(1,\sqrt{5}+2)$. Which formula that gives the slope of the tangent line to the graph of this circle at any point (x, y) on the circle?

- (a) $m \approx -0.89$
- (b) $m \approx 1.13$
- (c) $m \approx -2.25$
- (d) $m \approx 1.00$
- (e) $m \approx -1.13$
- 3. Find $\frac{dy}{dx}$ for the curve $x + \sin(y) = xy$. (You must solve for $\frac{dy}{dx}$ in terms of x and y).
- 4. Find $\frac{dt}{dz}$ for the curve $\ln(z+2t) \cos(t)\sin(z) = 12zt^3$
- 5. Find the slope of the line tangent to the curve $xe^y = 3x + 3y$ at the point (3, 5)