Implicit Differentiation

1. The figure below, which shows the line tangent to the graph of the circle $(x+1)^{2}+(y-2)^{2}=$ 9 at the point $(1, \sqrt{5}+2)$. Which formula that gives the slope of the tangent line to the graph of this circle at any point (x, y) on the circle?

(a) $\frac{d y}{d x}=-\frac{y}{x}$
(b) $\frac{d y}{d x}=\left(\frac{y}{x}\right)^{2}$
(c) $\frac{d y}{d x}=\frac{y-y_{1}}{x-x_{1}}$
(d) $\frac{d y}{d x}=\frac{y-2}{x-1}$
(e) $\frac{d y}{d x}=\frac{x+1}{2-y}$
2. The figure below, which shows the line tangent to the graph of the circle $(x+1)^{2}+(y-2)^{2}=$ 9 at the point $(1, \sqrt{5}+2)$. Which formula that gives the slope of the tangent line to the graph of this circle at any point (x, y) on the circle?

(a) $m \approx-0.89$
(b) $m \approx 1.13$
(c) $m \approx-2.25$
(d) $m \approx 1.00$
(e) $m \approx-1.13$
3. Find $\frac{d y}{d x}$ for the curve $x+\sin (y)=x y$. (You must solve for $\frac{d y}{d x}$ in terms of x and y).
4. Find $\frac{d t}{d z}$ for the curve $\ln (z+2 t)-\cos (t) \sin (z)=12 z t^{3}$
5. Find the slope of the line tangent to the curve $x e^{y}=3 x+3 y$ at the point $(3,5)$
